
AJUGAREPTANSIN, A NEW DITERPENOID FROM AJUGA REPTANS (L.) F. Camps, J. Coll, A. Cortel and A. Messeguer Instituto de Química Orgánica Aplicada de Cataluña (C.S.I.C.) c/ Jorge Girona Salgado, Barcelona 34. Spain

<u>Summary</u>: The structure of a new clerodane diterpene, isolated from <u>Ajuga</u> <u>rep-tans</u>, has been elucidated by chemical and spectral means and confirmed by X-ray crystallographic studies of the corresponding <u>p</u>-bromobenzoate.

During the study of phytoecdysones from <u>Ajuga reptans</u> (Labiatae), fraction nation of an ethanol plant extract by reversed phase chromatography according to an established procedure<sup>1</sup> allowed us to concentrate the ecdysoid activity in the 70% methanol fraction and to isolate from the 100% methanol fraction ajugareptansin (<u>I</u>)(0.025% yield from dry plant), a new diterpene with a clerodane structure, related to clerodendrin A (<u>II</u>)<sup>2</sup> and to ajugarins<sup>3</sup>.



Ajugareptansin is an amorphous solid,  $[\alpha]_D^{20} = -28^{\circ}(\text{CCl}_4, c=8.30)$ , <u>p-bromoben</u> zoate, m.p. 210-2°(EtOH), with the molecular formula  $C_{29}H_{44}O_{10}$  (Calcd C% 63.10 H% 8.03; Found, C% 62.78, H% 7.99; M<sup>+</sup>+1, 553 by chemical ionization MS with methane). Among other features its <sup>1</sup>H-NMR spectrum (100 MHz in CDCl<sub>3</sub> referred to TMS,  $\delta=0$ ) shows four methyl groups (0.84 s; 0.90 d, J= 6Hz; 0.90 t, J= 6Hz and 1.12 d, J= 6Hz), two acetoxy groups (1.90 and 2.10), -CH<sub>2</sub>OAc AB q, (5.00

and 4.15, J = 13Hz) and CH-OAc double doublet (4.80, J = 10 and 5.5 Hz).

Evidence for the presence of a saturated furofuran ring followed from O-CH-O doublet (5.62, J= 6Hz), which was shown by irradiation studies to be coupled to a complex signal centered at 2.75, the X double doublet of an ABX system (4.21, J= 7 and 8.5 Hz) and complex  $CH_2$ -O absorption (2H, centered at 3.84). Likewise, the fragmentation pattern attributable to that ring<sup>2</sup> appeared in the MS: base peak (m/e= 113), formed by scission of the C<sub>9</sub>-C<sub>11</sub> bond and related intense peaks (85, 83, 81 and 69 (m<sup>#</sup> 42.1)).

The presence of one secondary hydroxy group was inferred from IR absorption (3460 cm<sup>-1</sup>) and MS features of the trimethylsilylderivative of <u>I</u> which exhibited characteristic 73 mu shifts and the absence of typical fragments of trimethylsilylated primary alcohols (m/e= 103,  $CH_2=\bar{O}-Si(CH_3)_3$ )<sup>4</sup>. Furthermore, MS of the above <u>p</u>-bromobenzoate showed 182 mu shifts. The mild reaction conditions used for preparation of these derivatives ruled out the presence of a tertiary hydroxy group.

The <sup>13</sup>C-NMR spectrum of <u>I</u> (Table 1) provides evidence for three carbonyl ester groups (two acetates, singlets at 169.4 and 170.0, and singlet at 175.2). The above <sup>1</sup>H methyl absorptions suggested the 2-methylbutyrate moiety as possible alternative for the third ester group. This assumption was confirmed by lithium aluminum hydride reduction of <u>I</u> and GLC identification of the resulting 2-methylbutanol by comparison with an authentic sample. Likewise, chemical ionization MS of <u>I</u> exhibited an intense peak at m/e= 103, attributable to protonated 2-methylbutyric acid ion.

It is worth of note that the 17-methylene epoxide protons absorption appearing as a broad singlet (2.92), instead of the typical AB quartets reported in similar cases<sup>2,3,5</sup>, as well as the 5-6 ppm shielding of the C-17 absorption (43.4, t) compared to related structures<sup>3,5</sup> could point to a deformation of the chair conformation of the ring A of the decalin, promoted by the steric congestion of C-1 and C-9 substituents.

Substitution and configuration in ring B were deduced both from above  ${}^{1}_{H}$  and  ${}^{13}$ C-NMR data and were in agreement with previous reported assignments<sup>2,3,5</sup>. On the other hand,  ${}^{1}_{H}$ -NMR double doublet <u>H</u>-COH absorption (4.55, J= 11 and 6 Hz) indicates a OH substituent at C-3<sup>2</sup> and it is consistent with a plausible deshielding of the proton signal by the vicinal epoxide ring. Furthermore, the above couplings substantiate the proposed configuration at C-3 and the absence of substituents at C-2. The configuration at C-1 was assigned by decoupling

|        |              | _     | -      | -     |      |     |                                                |       |       |
|--------|--------------|-------|--------|-------|------|-----|------------------------------------------------|-------|-------|
| C-Atom |              |       | C-Atom |       |      |     | C-Atom                                         |       |       |
| 1      | 69 <b>.5</b> | đ     | 11     | 83.6  | đ    |     | CH CHCOO                                       | 14.2  | q (b) |
| 2      | 33.9         | t (a) | 12     | 37.9  | t (8 | B.) | <u>сн</u> зсн2снсоо                            | 11.4  | q     |
| 3      | 63.7         | đ     | 13     | 41.0  | d    |     |                                                | ••    | -     |
| 4      |              | 8     | 14     | 34.1  | t (8 | a)  | CH COO                                         | 21.2  | q (c) |
| 5      | 44.7         | 8     | 15     | 67.7  | t    |     | сн <u>с</u> оо                                 | 170.0 | 8     |
| 6      | 71.3         | d     | 16     | 108.2 | đ    |     | <u> </u>                                       |       | -     |
| 7      | 32.67        |       | 17     | 43.5  | t    |     | CH <u>C</u> 00                                 | 169.4 | S     |
| 8      | 32.73        | d     | 18     | 61.5  | t    |     | J                                              | 175 0 |       |
| 9      | 41.55        |       | 19     | 18.6  | q    |     | с <sub>4</sub> н <sub>9</sub> соо              | 175.2 | 8     |
|        |              |       | 20     | 15.8  | q (  | հ   |                                                | 42.0  | d     |
| 10     | 51.7         | a     | 20     | 10.0  | प्र  | 5)  | с <sub>2</sub> н <u>5</u> сн(сн <sub>3</sub> ) | THEV  | ũ     |
|        |              |       |        |       |      |     | сн сн сн                                       | 26.9  | t     |
|        |              |       |        |       |      |     | J L                                            |       |       |

Table 1. <sup>13</sup>C-NMR spectrum of I

23 MHz, CDCl<sub>3</sub>,  $\delta$  relative to TMS= 0. Multiplicity assigned by selective <sup>1</sup>H-<sup>13</sup>C decoupling. (a,b) Assignments may be interchanged. (c) Double intensity.

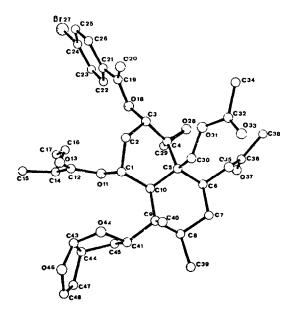



Fig. 1: ORTEP perspective drawing of p-bromobenzoate of I. Hydrogens are not included. studies on complex signal at 5.6, which revealed coupling constants J = 10, 6 and 4.5 Hz.

As shown in Fig 1, tentative structure <u>I</u> has been confirmed by X-ray crys tallographic studies of the corresponding <u>p</u>-bromobenzoate<sup>6</sup>. Crystals of this derivative are monoclinic, space group P2<sub>1</sub>, with <u>a</u> = 14.152 (5), b= 15.662(4), c= 8.182(2) Å,  $\beta$ = 93.31(3)<sup>2</sup> and Z=2. The structure was refined to R= 0.070 for 1591 observed reflections. The absolute configuration was determined by the Bijvoet method and it is related to that of clerodendrin A <u>p</u>-bromobenzoate chlorohydrin<sup>7</sup>. Rings C and D of the hexahydrofurofuran group exhibit an envelope and planar conformation respectively with a <u>cis</u> junction. In the trans decalin system, rings A and B adopt a distorted boat and a normal chair conformation respectively, 0(18)-C(29) being the shortest intramolecular distance, which could account for the above mentioned apparent magnetic equivalence of the 17-methylene protons.

<u>Acknowledgements</u>: Financial support from the Comisión Asesora de Investigación Científica y Técnica is gratefully acknowledged. The authors thank Dr. J. Rivera of this Institute for MS determinations, Prof. A. Alemany of Instituto de Química Orgánica General (C.S.I.C.), Madrid, for <sup>13</sup>C-NMR and 100 MHz <sup>1</sup>H-NMR spectra, Drs. C. Miravitlles and X. Solans of Instituto Jaime Almera (C.S.I.C.) Barcelona, for X-ray crystallographic studies and Prof. C. Pascual of Universidad Autónoma de Madrid for helpful discussions.

## REFERENCES

1.- D.A. Schooley, G. Weiss and K. Nakanishi, <u>Steroids</u> 19, 377 (1972)
2.- N. Kato, M. Shibayama and K. Munakata, <u>J.C.S. Perkin</u> I, 712 (1973)
3.- I. Kubo, Y.W. Lee, V. Balogh-Nair, K. Nakanishi and A. Chapya, <u>J.C.S.</u> <u>Chem. Comm.</u>, 949 (1976)
4.- A.E. Pierce "Silylation of Organic Compounds" Ed Pierce Chemical Co. Rockford (Illinois), 1968
5.- G. Savona, S. Passannanti, M.P. Paternostro, F. Piozzi, J. Hanson, P.B. Hitchcock and M. Siverns, <u>J.C.S. Perkin I</u>, 356 (1978)
6.- X. Solans, C. Miravitlles, J.P. Declercq and G. Germain, <u>Acta Cryst.</u>, to be submitted
7.- N. Kato, K. Munakata and C. Katayama, <u>J.C.S. Perkin II</u>, 69 (1973)

(Received in UK 8 March 1979)